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ABSTRACT

A simple proof by functional equation s is given for

Ramanujan ’s sum. Ramanuj an ’s sum is a usefu l

extension of Jacobi’ s triple product formula , and has

recently become Important in the treatment of certain

orthogonal polynomials defined by basic hypergeometric

series .
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A SIMPLE PROO F OF RAMANUJAN’S SUMMATION OF THE

George E. Andrews~
1
~ arid Richard A skey~~

In S; p. 222 , eq. (12.12. 2)] G. H. Hardy alludes to Ra manu j a ) S

remarkable formula with many parameters.

00 (a;q)
(I) v n 

~ ( a~q, x )
—‘ (b;q) 1 1  bn

(b/a ,q)
00
(q;q) (q/ax;q) (ax;q)

= (b;q)~,(b/ax;q) (q/a ;q) (x;q)

00b — nwhere —
~ 

< ‘ xl <1 , Iq I < 1 , (a;q) I (1-aq ), and
fl ~~~

(a;q) = (a;q)
00/(aq

’
~;q)~~).

There are four published proofs of this result ( [ 1 ] , [2 ] , [ 4 J  and [ 7] ) .

Those in [1 J , [2] and [7 J rely on somewhat tricky rearrangement of

series and on the q -anaiog of Gauss’s summatIon [10; p. 97, eq. (3.3.2. 5)]

-
~~ (a;q) (b;q) (-~~) ( c/a ;q),~,(c/b;q)

(2) 
n=0 

(c;q) ( q ;a) - 

(c;q)
00
(c/ab;q)

where Ic I < min (l, lab I ) .  The other proof uses the q-analogue of the

binomial series [10; p. 92, eq. (3.2.2.11)]:

f (~~~ (T~I~ ‘‘‘i- ~ ~(3) 
1 .~~~ ~ = 

~~~~~ 
l t l < i , I qj< i ,

n = 0  ~~~~~

but it is far fro m simple. Since Ramanujan ’s summation (1) has rec”nt ly

become important in the treatment of certain orthogonal polynom ials defined

j  Sponsored by the Uni ted States Army under Contract No. DAAGZ9-7 5-C-0024 , and
by the National Science Foundation under Grants 74-07282 and MPS 75-06687 A02.



ry bas ic hype rgeometr ic series ( 3 J .  it has become wort hwhi le  to present ~r.

~ilmost trivial proof of 1). Another very simple proof has ~~n fou n d by

M. I smail  [ 6 J .

Proof of (A)~ We begin by noting that  for ~~ < 1  . 1(b)

is an analytic function of b Inside Jb ~ ~ mm (1 . ~ax ’ ). since
b b -nn (I — — )  . . . ( I  — ) x

~ (a;q) x Ii q
A Ci t.. fl q( t )  i

~~
j ) — 

~~~ lb .n l  ‘• 
—~ a an =0 ‘ ‘~ ‘n n I  ( 1 - — )  . . . (I - —

q q

Furthermore ,

-~ a ; q , x a ; q , q x( - ) , 
b — a

1 b1
( 
b

- 

00 (a ;q) 31x~ 
= x 1(l - 

b 
00 (a ;q )~~ 1x~~

1

—
~~~~ 

(b; q) q 
~~~~~~~~ (

-l b— x (I - q )1tJ~1 ( b/q
Hence 

ii ‘~~

~ (a ,,~) q x
(6)  f( bq ) - x 1( l-b)f( b) a ”

00 (a :q) (l bq ”~ -
= -a b ’ — = -eb~~(l-b) f(b) + eb m f( bq )

and so

(1 — ~ ) f ( bq)  ( 1—b ) (x ~~ — ab 4) f (b)

or 
b(1 — —

(7 )  f(b) = b(I— b)( l —

If we iterate (7) n-I times we find that

-2 -
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(b/ a ;q)
( 8) f(b) (b;q) (b/ ax;q) f lxñ

and since f(b) Is analytic In the neighborhood of 0 given by bj < ax~ .

we obtain in the limit as n -. -
~~

(b/a; q) f(0)
(9) f(b) = 

(b;q)
00
(b/ax;q)

Now we observe from (4) and (3) that

(a;q) x~ (ax , q)00(10) f(q) 
n=0 (q;q) = 

(x;q)00

This allows us to evaluate f(0) by setting b q in (9)

(q;q) 00 ( ;~~~~~ 
q) 00 f(g)

(II ) f( 0) = —_____________________

(q/ a; q) 00

- 

(q;q) ( — ~~~~~ ;q) ( ax;q)
00

- (q/ a;q)
00 

(x;q)~
Finally we may utilize (11) to eliminate f(0) from (9)

12 a; q,x 
— f  b - 

(b/a;q) (q;q)
00 

(q/ax;q) (ax;q)
00

b ~ - 

(b;q)
00 (b/ax;q)00 

( q/ a , q)
00 

(x;q)~, ‘

as desired.

Note that Jacobi ’s triple product identity follow s directly from (1)

if we replace a by a~~, x by za and then set a = b = 0:
00

-‘ n n(n - l )/2  n( 13) 
n~~ oo 

( - I )  q z = (q ;q)
00 

(q/z ;q) (z;q)
00
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(a;q)
I. J. Schoenberg has pointed out an interesting property of (b ;q)~

which follows fro m Ram anuj an ’s sum. A sequence n = 0 , ± 1, . . .

is said to be totally positive if all subdeterminants of the doublely

infini te  matrix A = ~~~~~~~~~~~ <~~
, 

are nonnegative . Schoenberg [9 ]

proved that a sequence a is totally positive if the bilateral generating
00
S.’ flfunction f (z )  ~ a z  has the representation

-l 00 (1 + a.z)(l + 6 z ~~)cz+d z ,-r 
________________(14) f( z) = e i i

1= 1 (1 — ~3~z)(l —

c, d, a1,~~1, ~~~~ ~~0, 
~ 

(a . + + + 6~~) < 0 0~~

in the Interior of an annulus centered at the origin.

If a < b < 0 in (1) then, the generating function has the form (14)

and so

(a;~)~ [ (1 - bg~~~~~~ )( l  - pg
k

)
= (b;q) = 

k = O  (1 - aq i)(l ~~k)

is a totally positive sequence f or a < b <  0, 0 < q  < 1.  Schoenberg [9 ]

proved this when b = 0. For an extended discussion of totally positive

sequences see Karlin [ 8] .
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